Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Sport Health Sci ; 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37331508

RESUMO

BACKGROUND: To non-invasively test the hypothesis that (a) short-term lower limb unloading would induce changes in the neural control of force production (based on motor units (MUs) properties) in the vastus lateralis muscle and (b) possible changes are reversed by active recovery (AR). METHODS: Ten young males underwent 10 days of unilateral lower limb suspension (ULLS) followed by 21 days of AR. During ULLS, participants walked exclusively on crutches with the dominant leg suspended in a slightly flexed position (15°-20°) and with the contralateral foot raised by an elevated shoe. The AR was based on resistance exercise (leg press and leg extension) and executed at 70% of each participant's 1 repetition maximum, 3 times/week. Maximal voluntary isometric contraction (MVC) of knee extensors and MUs properties of the vastus lateralis muscle were measured at baseline, after ULLS, and after AR. MUs were identified using high-density electromyography during trapezoidal isometric contractions at 10%, 25%, and 50% of the current MVC, and individual MUs were tracked across the 3 data collection points. RESULTS: We identified 1428 unique MUs, and 270 of them (18.9%) were accurately tracked. After ULLS, MVC decreased by -29.77%, MUs absolute recruitment/derecruitment thresholds were reduced at all contraction intensities (with changes between the 2 variables strongly correlated), while discharge rate was reduced at 10% and 25% but not at 50% MVC. Impaired MVC and MUs properties fully recovered to baseline levels after AR. Similar changes were observed in the pool of total as well as tracked MUs. CONCLUSION: Our novel results demonstrate, non-invasively, that 10 days of ULLS affected neural control predominantly by altering the discharge rate of lower-threshold but not of higher-threshold MUs, suggesting a preferential impact of disuse on motoneurons with a lower depolarization threshold. However, after 21 days of AR, the impaired MUs properties were fully restored to baseline levels, highlighting the plasticity of the components involved in neural control.

2.
Acta Physiol (Oxf) ; 238(3): e13986, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178372

RESUMO

Physical inactivity represents a heavy burden for modern societies and is spreading worldwide, it is a recognised pandemic and is the fourth cause of global mortality. Not surprisingly, there is an increasing interest in longitudinal studies on the impact of reduced physical activity on different physiological systems. This narrative review focuses on the pathophysiological mechanisms of step reduction (SR), an experimental paradigm that involves a sudden decrease in participants' habitual daily steps to a lower level, mimicking the effects of a sedentary lifestyle. Analogous animal models of reduced physical activity, namely, the "wheel-lock" and the "cage reduction" models, which can provide the foundation for human studies, are also discussed. The empirical evidence obtained thus far shows that even brief periods of reduced physical activity can lead to substantial alterations in skeletal muscle health and metabolic function. In particular, decrements in lean/muscle mass, muscle function, muscle protein synthesis, cardiorespiratory fitness, endothelial function and insulin sensitivity, together with an increased fat mass and inflammation, have been observed. Exercise interventions seem particularly effective for counteracting these pathophysiological alterations induced by periods of reduced physical activity. A direct comparison of SR with other human models of unloading, such as bed rest and lower limb suspension/immobilisation, is presented. In addition, we propose a conceptual framework aiming to unravel the mechanisms of muscle atrophy and insulin resistance in the specific context of reduced ambulatory activity. Finally, methodological considerations, knowledge gaps and future directions for both animal and human models are also discussed in the review.


Assuntos
Exercício Físico , Resistência à Insulina , Animais , Humanos , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Musculares/metabolismo
3.
Biology (Basel) ; 12(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979123

RESUMO

Human skeletal muscle atrophy and a disproportionate force loss occur within a few days of unloading in space and on Earth, but the underlying mechanisms are not fully understood. Disruption of neuromuscular junction homeostasis has been proposed as one of the possible causes. Here, we investigated the potential mechanisms involved in this neuromuscular disruption induced by a 10-day unilateral lower limb suspension (ULLS) in humans. Specifically, we investigated hemichannels' upregulation, neuromuscular junction and axonal damage, neurotrophins' receptor downregulation and inflammatory transcriptional signatures. Biomarkers were evaluated at local and systemic levels. At the sarcolemmal level, changes were found to be associated with an increased expression of connexin 43 and pannexin-1. Upregulation of the inflammatory transcripts revealed by deep transcriptomics was found after 10 days of ULLS. The destabilisation of the neuromuscular junction was not accompanied by changes in the secretion of the brain-derived neurotrophic factor and neurotrophin-4, while their receptor, BDNF/NT growth factors receptor (TrkB), decreased. Furthermore, at 5 days of ULLS, there was already a significant upregulation of the serum neurofilament light chain concentration, an established clinical biomarker of axonal injury. At 10 days of ULLS, other biomarkers of early denervation processes appeared. Hence, short periods of muscle unloading induce sarcolemmal hemichannels upregulation, inflammatory transcripts upregulation, neuromuscular junction instability and axonal damage.

4.
Eur J Transl Myol ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36786151

RESUMO

At the end of the 2022 Padua Days of Muscle and Mobility Medicine (Pdm3) the next year's meeting was scheduled from 29 March to 1 April 2023. Despite the worsening evolution of the crisis in Eastern Europe, the program was confirmed in autumn 2022 with Scientific Sessions that will take place over three full days in the Aula Guariento of the Galileian Academy of Arts, Letters and Sciences of Padua (March 29, 2023) and then at the Conference Room of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. Collected during autumn and early winter, many titles and abstracts where submitted (about 100 Oral presentations are listed in the preliminary Program by January 31, 2023) confirming attractiveness of the 2023 Pdm3. The four days will include oral presentations of scientists and clinicians from Austria, Bulgaria, Canada, Denmark, France, Georgia, Germany, Iceland, Ireland, Italy, Mongolia, Norway, Russia, Slovakia, Slovenia, Spain, Switzerland, The Netherlands and USA. Together with the preliminary Program at January 31, 2023, the Collection of Abstracts is e-published in this Issue 33 (1) 2023 of the European Journal of Translational Myology (EJTM). You are invited to join, submitting your Last Minute Abstracts to ugo.carraro@unipd.it by March 15, 2023. Furthermore, with the more generous deadline of May 20, 2023, submit please "Communications" to the European Journal of Translational Myology (SCOPUS Cite Score Tracker 2023: 3.2 by January 5, 2023) and/or to the 2023 Special Issue: "Pdm3" of the Journal Diagnostics, MDPI, Basel (I.F. near to 4.0) with deadline September 30, 2023. Both journals will provide discounts to the first accepted typescripts. See you soon at the Hotel Petrarca of Montegrotto Terme, Padua, Italy. For a promo of the 2023 Pdm3 link to: https://www.youtube.com/watch?v=zC02D4uPWRg.

5.
Geroscience ; 45(1): 331-344, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35948859

RESUMO

Exercise training can induce adaptive changes to tendon tissue both structurally and mechanically; however, the underlying compositional changes that contribute to these alterations remain uncertain in humans, particularly in the context of the ageing tendon. The aims of the present study were to determine the molecular changes with ageing in patellar tendons in humans, as well as the responses to exercise and exercise type (eccentric (ECC) and concentric (CON)) in young and old patellar tendon. Healthy younger males (age 23.5 ± 6.1 years; n = 27) and older males (age 68.5 ± 1.9 years; n = 27) undertook 8 weeks of CON or ECC training (3 times per week; at 60% of 1 repetition maximum (1RM)) or no training. Subjects consumed D2O throughout the protocol and tendon biopsies were collected after 4 and 8 weeks for measurement of fractional synthetic rates (FSR) of tendon protein synthesis and gene expression. There were increases in tendon protein synthesis following 4 weeks of CON and ECC training (P < 0.01; main effect by ANOVA), with no differences observed between young and old males, or training type. At the transcriptional level however, ECC in young adults generally induced greater responses of collagen and extracellular matrix-related genes than CON, while older individuals had reduced gene expression responses to training. Different training types did not appear to induce differential tendon responses in terms of protein synthesis, and while tendons from older adults exhibited different transcriptional responses to younger individuals, protein turnover changes with training were similar for both age groups.


Assuntos
Ligamento Patelar , Masculino , Humanos , Idoso , Adolescente , Ligamento Patelar/fisiologia , Exercício Físico/fisiologia , Envelhecimento
6.
J Cachexia Sarcopenia Muscle ; 14(1): 439-451, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36517414

RESUMO

BACKGROUND: Inactivity and unloading induce skeletal muscle atrophy, loss of strength and detrimental metabolic effects. Bed rest is a model to study the impact of inactivity on the musculoskeletal system. It not only provides information for bed-ridden patients care, but it is also a ground-based spaceflight analogue used to mimic the challenges of long space missions for the human body. In both cases, it would be desirable to develop a panel of biomarkers to monitor muscle atrophy in a minimally invasive way at point of care to limit the onset of muscle loss in a personalized fashion. METHODS: We applied mass spectrometry-based proteomics to measure plasma protein abundance changes in response to 10 days of bed rest in 10 young males. To validate the correlation between muscle atrophy and the significant hits emerging from our study, we analysed in parallel, with the same pipeline, a cohort of cancer patients with or without cachexia and age-matched controls. Our analysis resulted in the quantification of over 500 proteins. RESULTS: Unloading affected plasma concentration of proteins of the complement cascade, lipid carriers and proteins derived from tissue leakage. Among the latter, teneurin-4 increased 1.6-fold in plasma at bed rest day 10 (BR10) compared with BR0 (6.E9 vs. 4.3E9, P = 0.02) and decreased to 0.6-fold the initial abundance after 2 days of recovery at normal daily activity (R + 2, 2.7E9, P = 3.3E-4); the extracellular matrix protein lumican was decreased to 0.7-fold (1.2E9 vs. 8.5E8, P = 1.5E-4) at BR10 and remained as low at R + 2. We identified six proteins distinguishing subjects developing unloading-mediated muscle atrophy (decrease of >4% of quadriceps cross-sectional area) from those largely maintaining their initial muscle mass. Among them, transthyretin, a thyroid hormone-binding protein, was significantly less abundant at BR10 in the plasma of subjects with muscle atrophy compared with those with no atrophy (1.6E10 vs. 2.6E10, P = 0.001). Haptoglobin-related protein was also significantly reduced in the serum of cancer patients with cachexia compared with that of controls. CONCLUSIONS: Our findings highlight a combination or proteomic changes that can be explored as potential biomarkers of muscle atrophy occurring under different conditions. The panel of significant proteomic differences distinguishing atrophy-prone and atrophy-resistant subjects after 10 days of bed rest need to be tested in a larger cohort to validate their potential to predict inactivity-triggered muscle loss in humans.


Assuntos
Repouso em Cama , Proteoma , Masculino , Humanos , Repouso em Cama/efeitos adversos , Voluntários Saudáveis , Caquexia , Proteômica , Atrofia Muscular/etiologia
7.
Ageing Res Rev ; 83: 101810, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36471545

RESUMO

Physical inactivity (PI) is a major risk factor of chronic diseases. A major aspect of PI is loss of muscle mass and strength. The latter phenomenon significantly impacts daily life and represent a major issue for global health. Understandably, skeletal muscle itself has been the major focus of studies aimed at understanding the mechanisms underlying loss of mass and strength. Relatively lesser attention has been given to the contribution of alterations in somatomotor control, despite the fact that these changes can start very early and can occur at multiple levels, from the cortex down to the neuromuscular junction (NMJ). It is well known that exposure to chronic inactivity or immobilization causes a disproportionate loss of force compared to muscle mass, i.e. a loss of specific or intrinsic whole muscle force. The latter phenomenon may be partially explained by the loss of specific force of individual muscle fibres, but several other players are very likely to contribute to such detrimental phenomenon. Irrespective of the length of the disuse period, the loss of force is, in fact, more than two-fold greater than that of muscle size. It is very likely that somatomotor alterations may contribute to this loss in intrinsic muscle force. Here we review evidence that alterations of one component of somatomotor control, namely the neuromuscular junction, occur in disuse. We also discuss some of the novel players in NMJ stability (e.g., homer, bassoon, pannexin) and the importance of new established and emerging molecular markers of neurodegenerative processes in humans such as agrin, neural-cell adhesion molecule and light-chain neurofilaments.


Assuntos
Músculo Esquelético , Atrofia Muscular , Humanos , Atrofia Muscular/patologia , Músculo Esquelético/patologia , Junção Neuromuscular , Fibras Musculares Esqueléticas
8.
J Appl Physiol (1985) ; 134(1): 190-202, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476161

RESUMO

This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.NEW & NOTEWORTHY For the first time, the neuromechanics of distinct movement modalities that fundamentally differ in their energy management function have been investigated during overload systematically induced by hypergravity. Parabolic flight provides a unique experimental setting that allows near-natural movement execution without the confounding effects typically associated with load variation. Our findings show that gravity-adjusted muscle activities are inversely affected within jumps and landings. Specifically, in 1.8 G, typical task-specific differences in neuromuscular activity are reduced during the center of mass deceleration phase, resulting in fascicle lengthening, which is associated with energy dissipation.


Assuntos
Músculo Esquelético , Tendões , Humanos , Fenômenos Biomecânicos , Tendões/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Perna (Membro)/fisiologia , Contração Muscular/fisiologia
9.
Metabolites ; 12(9)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144258

RESUMO

Obesity is a complex condition characterized by abnormal and excessive fat accumulation, resulting in an increased risk for severe health problems. Skeletal muscles play a major role in movement and fat catabolism, but the insulin resistance that comes with obesity makes it difficult to fulfill these tasks. In this study, we analyse two types of training protocols, moderate intensity continuous training (MICT) versus high intensity interval training (HIIT), in a cohort of obese subjects to establish which muscle adaptations favour fat consumption in response to exercise. Mitochondria play a role in fat oxidation. We found protein upregulation of mitochondrial biomarkers, TOMM20 and Cox-4, in HIIT but not in MICT, without detecting any shifts in fibre composition phenotype of the vastus lateralis in both training groups. Interestingly, both MICT and HIIT protocols showed increased protein levels of perilipin PLIN2, which is involved in the delivery and consumption of fats. HIIT also augmented perilipin PLIN5. Perilipins are involved in fat storage in skeletal muscles and their upregulation, along with the analysis of circulatory lipid profiles reported in the present study, suggest important adaptations induced by the two types of training protocols that favour fat consumption and weight loss in obese subjects.

10.
Front Physiol ; 13: 986881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060698

RESUMO

Although regular physical activity exposure leads to positive postural balance control (PBC) adaptations, few studies investigated its effects, or the one of inactivity, on PBC in populations of different age groups. Thus, this study investigated the impact of a physically active lifestyle on static and dynamic PBC in young and older adults. Thirty-five young physically active subjects (YA), 20 young sedentary subjects (YS), 16 physically active older adults (OA), and 15 sedentary older adults (OS) underwent a static and a dynamic PBC assessment. A force platform and an instrumented proprioceptive board were employed to measure the center of pressure (COP) trajectory and the anteroposterior oscillations, respectively. In static conditions, no significant differences were detected among groups considering the overall postural balance performance represented by the area of confidence ellipse values. Conversely, the YA highlighted a higher efficiency (i.e., lower sway path mean velocity) in PBC maintenance compared to the other groups (YA vs OA: p = 0.0057, Cohen's d = 0.94; YA vs OS p = 0.043, d = 1.07; YA vs YS p = 0.08, d = 0.67). OS exhibited an overall worse performance in dynamic conditions than YA and YS. Surprisingly, no differences were found between YS and OA for all the static and dynamic parameters considered. In conclusion, our results suggest that a physically active lifestyle may promote static and dynamic balance performance in young and older adults, thus with potentially positive effects on the age-related decline of postural balance performance. Dynamic PBC assessment seems more sensitive in detecting differences between groups than the static evaluation.

11.
J Physiol ; 600(21): 4731-4751, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36071599

RESUMO

Electrophysiological alterations of the neuromuscular junction (NMJ) and motor unit potential (MUP) with unloading are poorly studied. We aimed to investigate these aspects and the underlying molecular mechanisms with short-term unloading and active recovery (AR). Eleven healthy males underwent a 10-day unilateral lower limb suspension (ULLS) period, followed by 21-day AR based on resistance exercise. Quadriceps femoris (QF) cross-sectional area (CSA) and isometric maximum voluntary contraction (MVC) were evaluated. Intramuscular electromyographic recordings were obtained during 10% and 25% MVC isometric contractions from the vastus lateralis (VL). Biomarkers of NMJ molecular instability (serum c-terminal agrin fragment, CAF), axonal damage (neurofilament light chain) and denervation status were assessed from blood samples and VL biopsies. NMJ and ion channel transcriptomic profiles were investigated by RNA-sequencing. QF CSA and MVC decreased with ULLS. Increased CAF and altered NMJ transcriptome with unloading suggested the emergence of NMJ molecular instability, which was not associated with impaired NMJ transmission stability. Instead, increased MUP complexity and decreased motor unit firing rates were found after ULLS. Downregulation of ion channel gene expression was found together with increased neurofilament light chain concentration and partial denervation. The AR period restored most of these neuromuscular alterations. In conclusion, the human NMJ is destabilized at the molecular level but shows functional resilience to a 10-day unloading period at least at relatively low contraction intensities. However, MUP properties are altered by ULLS, possibly due to alterations in ion channel dynamics and initial axonal damage and denervation. These changes are fully reversed by 21 days of AR. KEY POINTS: We used integrative electrophysiological and molecular approaches to comprehensively investigate changes in neuromuscular integrity and function after a 10-day unilateral lower limb suspension (ULLS), followed by 21 days of active recovery in young healthy men, with a particular focus on neuromuscular junction (NMJ) and motor unit potential (MUP) properties alterations. After 10-day ULLS, we found significant NMJ molecular alterations in the absence of NMJ transmission stability impairment. These findings suggest that the human NMJ is functionally resilient against insults and stresses induced by short-term disuse at least at relatively low contraction intensities, at which low-threshold, slow-type motor units are recruited. Intramuscular electromyography analysis revealed that unloading caused increased MUP complexity and decreased motor unit firing rates, and these alterations could be related to the observed changes in skeletal muscle ion channel pool and initial and partial signs of fibre denervation and axonal damage. The active recovery period restored these neuromuscular changes.


Assuntos
Contração Muscular , Transcriptoma , Masculino , Humanos , Contração Muscular/fisiologia , Junção Neuromuscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Eletromiografia
12.
Med Sci Sports Exerc ; 54(12): 2188-2195, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35941517

RESUMO

PURPOSE: Muscle anatomical cross-sectional area (ACSA) can be assessed using ultrasound and images are usually evaluated manually. Here, we present DeepACSA, a deep learning approach to automatically segment ACSA in panoramic ultrasound images of the human rectus femoris (RF), vastus lateralis (VL), gastrocnemius medialis (GM) and lateralis (GL) muscles. METHODS: We trained three muscle-specific convolutional neural networks (CNN) using 1772 ultrasound images from 153 participants (age = 38.2 yr, range = 13-78). Images were acquired in 10% increments from 30% to 70% of femur length for RF and VL and at 30% and 50% of muscle length for GM and GL. During training, CNN performance was evaluated using intersection-over-union scores. We compared the performance of DeepACSA to manual analysis and a semiautomated algorithm using an unseen test set. RESULTS: Comparing DeepACSA analysis of the RF to manual analysis with erroneous predictions removed (3.3%) resulted in intraclass correlation (ICC) of 0.989 (95% confidence interval = 0.983-0.992), mean difference of 0.20 cm 2 (0.10-0.30), and SEM of 0.33 cm 2 (0.26-0.41). For the VL, ICC was 0.97 (0.96-0.968), mean difference was 0.85 cm 2 (-0.4 to 1.31), and SEM was 0.92 cm 2 (0.73-1.09) after removal of erroneous predictions (7.7%). After removal of erroneous predictions (12.3%), GM/GL muscles demonstrated an ICC of 0.98 (0.96-0.99), a mean difference of 0.43 cm 2 (0.21-0.65), and an SEM of 0.41 cm 2 (0.29-0.51). Analysis duration was 4.0 ± 0.43 s (mean ± SD) for analysis of one image in our test set using DeepACSA. CONCLUSIONS: DeepACSA provides fast and objective segmentation of lower limb panoramic ultrasound images comparable with manual segmentation. Inaccurate model predictions occurred predominantly on low-quality images, highlighting the importance of high-quality image for accurate prediction.


Assuntos
Aprendizado Profundo , Humanos , Adulto , Ultrassonografia/métodos , Extremidade Inferior/diagnóstico por imagem , Extremidade Inferior/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
13.
Med Sci Sports Exerc ; 54(8): 1346-1354, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35324511

RESUMO

PURPOSE: The hamstrings (HS) muscle group plays a fundamental role in maintaining knee stability, thus contributing to the prevention and rehabilitation of lower limb musculoskeletal injuries. However, little is known about HS structural and functional adaptations after periods of prolonged inactivity. Our purpose was to investigate the HS morphological and contractile properties changes during 10 d of bed rest (BR). METHODS: Ten young healthy males underwent a 10-d BR. HS cross-sectional area (CSA) (at 30%, 50%, and 70% of femur length) and biceps femoris long head (BFlh) architecture were assessed by ultrasound imaging after 0 d (BR0), 2 d (BR2), 4 d (BR4), 6 d (BR6), and 10 d (BR10) of BR, whereas BFlh contractile properties (radial twitch displacement [Dm] and contraction time [Tc]) were evaluated at the same time points by tensiomyography. HS muscle volume was assessed by magnetic resonance imaging at BR0 and BR10. RESULTS: A reduction in muscle volume was observed in BFlh ( P = 0.002; Δ = -3.53%), biceps femoris short head ( P = 0.002; Δ = -3.54%), semitendinosus ( P = 0.002; Δ = -2.63%), semimembranosus ( P = 0.002; Δ = -2.01%), and HS pooled together ( P < 0.001; Δ = -2.78%). Early changes in CSA were detected at 30% femur length already at BR6 for BFlh ( P = 0.009; Δ = -2.66%) and biceps femoris short head ( P = 0.049; Δ = -1.96%). We also found a reduction in fascicle length at BR6 ( P = 0.035; Δ = -2.44%) and BR10 ( P < 0.001; Δ = -2.84%). Dm and Tc increased at BR2 ( P = 0.010; Δ = 30.0%) and B10 ( P = 0.019; Δ = 19.7%), respectively. CONCLUSIONS: Despite being a nonpostural muscle group, HS exhibited a moderate reduction in muscle dimensions in response to a short unloading period. Small changes in BFlh fascicle length were also observed, accompanied by alterations in BFLh contractile properties. These HS modifications should not be ignored from a clinical perspective.


Assuntos
Músculos Isquiossurais , Músculos Isquiossurais/fisiologia , Humanos , Joelho/diagnóstico por imagem , Joelho/fisiologia , Extremidade Inferior , Masculino , Contração Muscular , Força Muscular/fisiologia
14.
PNAS Nexus ; 1(3): pgac086, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36741463

RESUMO

Astronauts experience dramatic loss of muscle mass, decreased strength, and insulin resistance, despite performing daily intense physical exercise that would lead to muscle growth on Earth. Partially mimicking spaceflight, prolonged bed rest causes muscle atrophy, loss of force, and glucose intolerance. To unravel the underlying mechanisms, we employed highly sensitive single fiber proteomics to detail the molecular remodeling caused by unloading and inactivity during bed rest and changes of the muscle proteome of astronauts before and after a mission on the International Space Station. Muscle focal adhesions, involved in fiber-matrix interaction and insulin receptor stabilization, are prominently downregulated in both bed rest and spaceflight and restored upon reloading. Pathways of antioxidant response increased strongly in slow but not in fast muscle fibers. Unloading alone upregulated markers of neuromuscular damage and the pathway controlling EIF5A hypusination. These proteomic signatures of mechanical unloading in muscle fiber subtypes contribute to disentangle the effect of microgravity from the pleiotropic challenges of spaceflight.

15.
J Int Soc Sports Nutr ; 18(1): 62, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530857

RESUMO

BACKGROUND: A ketogenic diet (KD) is a nutritional approach, usually adopted for weight loss, that restricts daily carbohydrates under 30 g/day. KD showed contradictory results on sport performance, whilst no data are available on team sports. We sought to investigate the influence of a KD on different parameters in semi-professional soccer players. METHODS: Subjects were randomly assigned to a iso-protein (1.8 g/Kg body weight/day) ketogenic diet (KD) or western diet (WD) for 30 days. Body weight and body composition, resting energy expenditure (REE), respiratory exchange ratio (RER), cross sectional area (CSA) and isometric muscle strength of quadriceps, counter movement jump (CMJ) and yoyo intermittent recovery test time were measured. RESULTS: There was a significantly higher decrease of body fat (p = 0.0359), visceral adipose tissue (VAT) (p = 0.0018), waist circumference (p = 0.0185) and extra-cellular water (p = 0.0060) in KD compared to WD group. Lean soft tissue, quadriceps muscle area, maximal strength and REE showed no changes in both groups. RER decreased significantly in KD (p = 0.0008). Yo-yo intermittent test improved significantly (p < 0.0001) in both groups without significant differences between groups. CMJ significantly improved (p = 0.0021) only in KD. CONCLUSIONS: This is the first study investigating the effects of a KD on semi-professional soccer players. In our study KD athletes lost fat mass without any detrimental effects on strength, power and muscle mass. When the goal is a rapid weight reduction in such athletes, the use of a KD should be taken into account. TRIAL REGISTRATION: registered retrospectively on Clinical Trial registration number NCT04078971 .


Assuntos
Composição Corporal , Dieta Cetogênica , Força Muscular , Músculo Esquelético/fisiologia , Fenômenos Fisiológicos da Nutrição Esportiva , Adulto , Atletas , Dieta Ocidental , Humanos , Masculino , Estudos Prospectivos , Adulto Jovem
16.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R495-R503, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318712

RESUMO

Space analogs, such as bed rest, are used to reproduce microgravity-induced morphological and physiological changes and can be used as clinical models of prolonged inactivity. Nevertheless, nonuniform decreases in muscle mass and function have been frequently reported, and peripheral nerve adaptations have been poorly studied, although some of these mechanisms may be explained. Ten young healthy males (18-33 yr) underwent 10 days of horizontal bed rest. Peripheral neurophysiological assessments were performed bilaterally for the dominant (DL) and nondominant upper and lower limbs (N-DL) on the 1st and 10th day of bed rest, including ultrasound of the median, deep peroneal nerve (DPN), and common fibular nerve (CFN) , as well as a complete nerve conduction study (NCS) of the upper and lower limbs. Consistently, reduced F waves, suggesting peripheral nerve dysfunction, of both the peroneal (DL: P = 0.005, N-DL: P = 0.013) and tibial nerves (DL: P = 0.037, N-DL: P = 0.005) were found bilaterally, whereas no changes were observed in nerve ultrasound or other parameters of the NCS of both the upper and lower limbs. In these young healthy males, only the F waves, known to respond to postural changes, were significantly affected by short-term bed rest. These preliminary results suggest that during simulated microgravity, most changes occur at the muscle or central nervous system level. Since the assessment of F waves is common in clinical neurophysiological examinations, caution should be used when testing individuals after prolonged immobility.


Assuntos
Repouso em Cama , Extremidades/inervação , Sistema Nervoso Periférico/fisiologia , Simulação de Ausência de Peso , Adaptação Fisiológica , Adolescente , Adulto , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Condução Nervosa , Exame Neurológico , Sistema Nervoso Periférico/diagnóstico por imagem , Decúbito Dorsal , Fatores de Tempo , Ultrassonografia , Adulto Jovem
17.
Med Sci Sports Exerc ; 53(7): 1529-1536, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34127637

RESUMO

PURPOSE: This study aimed to investigate the changes in fascicle length (Lf) of biceps femoris long head (BFlh) after 10 d of bed rest (BR) by comparing four different ultrasound (US) methods. METHODS: Ten healthy men participated in 10-d BR. Before (BR0) and after (BR10) the BR period, BFlh Lf values were obtained using 1) extended-field-of-view (EFOV) technique, 2) the manual linear extrapolation (MLE) method, and 3) two trigonometric equations (equations A and B) from a single US image. RESULTS: After BR10, decreased Lf values were observed by EFOV (P < 0.001; Hedges' g = 0.29) and MLE (P = 0.0082; g = 0.22) methods, but not with equations A and B. Differences between equation A and the other US methods were detected at both time points. The percentage of changes in Lf between BR0 and BR10 was influenced by the US methods applied, with difference detected between the changes measured by EFOV and the ones estimated by equation A (P = 0.04; g = 0.53). Bland-Altman analyses revealed relevant average absolute biases in Lf between EFOV and other methods at both time points (range BR0-BR10: MLE, 0.3-0.37 cm (3.4%-4.32%); equation B, 0.3-0.48 cm (3.24%-5.41%); equation A, 2.44-2.97 cm (24.05%-29.2%)). A significant correlation (r = 0.83) in percentage of change in Lf values was observed only between EFOV and MLE. CONCLUSIONS: We showed that four distinct US methods lead to different results in the assessment of BFlh Lf changes after a short-term period of unloading. The implementation of EFOV technique (or alternatively MLE) to assess Lf changes in BFlh during longitudinal studies is warranted.


Assuntos
Repouso em Cama , Músculos Isquiossurais/diagnóstico por imagem , Músculos Isquiossurais/fisiologia , Ultrassonografia/métodos , Adolescente , Adulto , Humanos , Masculino , Adulto Jovem
18.
J Physiol ; 599(12): 3037-3061, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33881176

RESUMO

KEY POINTS: Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation-contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading. ABSTRACT: Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)-positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C-terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross-sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation-contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading.


Assuntos
Cálcio , Retículo Sarcoplasmático , Humanos , Contração Muscular , Músculo Esquelético , Junção Neuromuscular , Músculo Quadríceps
19.
Sports Med ; 51(6): 1151-1170, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33683628

RESUMO

Ultrasound (US) imaging has been widely used in both research and clinical settings to evaluate the morphological and mechanical properties of muscle and tendon. In elite sports scenarios, a regular assessment of such properties has great potential, namely for testing the response to training, detecting athletes at higher risks of injury, screening athletes for structural abnormalities related to current or future musculoskeletal complaints, and monitoring their return to sport after a musculoskeletal injury. However, several practical and methodological aspects of US techniques should be considered when applying this technology in the elite sports context. Therefore, this narrative review aims to (1) present the principal US measures and field of applications in the context of elite sports; (2) to discuss, from a methodological perspective, the strengths and shortcomings of US imaging for the assessment of muscle and tendon properties; and (3) to provide future directions for research and application.


Assuntos
Esportes , Atletas , Humanos , Músculos , Tendões/diagnóstico por imagem , Ultrassonografia
20.
Acta Physiol (Oxf) ; 231(2): e13557, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32921001

RESUMO

AIM: Skeletal muscles of Body Builders (BB) represent an interesting model to study muscle mass gains in response to high volume resistance training. It is debated whether muscle contractile performance improves in proportion to mass. Here, we aim to assess whether muscle hypertrophy does not occur at the expense of performance. METHODS: Six BB and Six untrained controls (CTRL) were recruited. Cross-sectional area (CSA) and maximum voluntary contraction (MVC) of quadriceps femoris muscle (QF) and CSA and architecture of vastus lateralis (VL) were determined. Moreover, a biopsy was taken from VL mid-portion and single fibres were analysed. RESULTS: QF CSA and MVC were 32% (n.s., P = .052) and 58% (P = .009) higher in BB than in CTRL, respectively. VL CSA was 37% higher in BB (P = .030). Fast 2A fibres CSA was 24% (P = .048) greater in BB than in CTRL, when determined in immunostained sections of biopsy samples. Single permeabilized fast fibres CSA was 37% (n.s., P = .052) higher in BB than in CTRL, and their force was slightly higher in BB (n.s.), while specific tension (P0 ) was 19% (P = .024) lower. The lower P0 was not explained either by lower myosin content or by impaired calcium diffusion. Conversely, the swelling caused by skinning-induced permeabilization was different and, when used to correct P0 , differences between populations disappeared. CONCLUSIONS: The results show that high degree of muscle hypertrophy is not detrimental for force generation capacity, as increases in fibre size and force are strictly proportional once the differential swelling response is accounted for.


Assuntos
Fibras Musculares Esqueléticas , Treinamento de Força , Idoso , Humanos , Contração Muscular , Músculo Esquelético , Músculo Quadríceps
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...